Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Rep ; 9(16): e14975, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34405579

RESUMEN

Voltage-gated ion channels play a key role in the action potential (AP) initiation and its propagation in sensory neurons. Modulation of their activity during chronic inflammation creates a persistent pain state. In this study, we sought to determine how peripheral inflammation caused by complete Freund's adjuvant (CFA) alters the fast sodium (INa ), L-type calcium (ICaL ), and potassium (IK ) currents in primary afferent fibers to increase nociception. In our model, intraplantar administration of CFA induced mechanical allodynia and thermal hyperalgesia at day 14 post-injection. Using whole-cell patch-clamp recording in dissociated small (C), medium (Aδ), and large-sized (Aß) rat dorsal root ganglion (DRG) neurons, we found that CFA prolonged the AP duration and increased the amplitude of the tetrodotoxin-resistant (TTX-r) INa in Aß fibers. In addition, CFA accelerated the recovery of INa from inactivation in C and Aδ nociceptive fibers but enhanced the late sodium current (INaL ) only in Aδ and Aß neurons. Inflammation similarly reduced the amplitude of ICaL in each neuronal cell type. Fourteen days after injection, CFA reduced both components of IK (IKdr and IA ) in Aδ fibers. We also found that IA was significantly larger in C and Aδ neurons in normal conditions and during chronic inflammation. Our data, therefore, suggest that targeting the transient potassium current IA represents an efficient way to shift the balance toward antinociception during inflammation, since its activation will selectively decrease the AP duration in nociceptive fibers. Altogether, our data indicate that complex interactions between IK , INa , and ICaL reduce pain threshold by concomitantly enhancing the activity of nociceptive neurons and reducing the inhibitory action of Aß fibers during chronic inflammation.


Asunto(s)
Potenciales de Acción , Neuronas Aferentes/metabolismo , Dolor Nociceptivo/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiología , Masculino , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Nocicepción , Dolor Nociceptivo/fisiopatología , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Tetrodotoxina/farmacología
2.
J Neuroinflammation ; 18(1): 79, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757529

RESUMEN

BACKGROUND: Pain is reported as the leading cause of disability in the common forms of inflammatory arthritis conditions. Acting as a key player in nociceptive processing, neuroinflammation, and neuron-glia communication, the chemokine CCL2/CCR2 axis holds great promise for controlling chronic painful arthritis. Here, we investigated how the CCL2/CCR2 system in the dorsal root ganglion (DRG) contributes to the peripheral inflammatory pain sensitization. METHODS: Repeated intrathecal (i.t.) administration of the CCR2 antagonist, INCB3344 was tested for its ability to reverse the nociceptive-related behaviors in the tonic formalin and complete Freund's adjuvant (CFA) inflammatory models. We further determined by qPCR the expression of CCL2/CCR2, SP and CGRP in DRG neurons from CFA-treated rats. Using DRG explants, acutely dissociated primary sensory neurons and calcium mobilization assay, we also assessed the release of CCL2 and sensitization of nociceptors. Finally, we examined by immunohistochemistry following nerve ligation the axonal transport of CCL2, SP, and CGRP from the sciatic nerve of CFA-treated rats. RESULTS: We first found that CFA-induced paw edema provoked an increase in CCL2/CCR2 and SP expression in ipsilateral DRGs, which was decreased after INCB3344 treatment. This upregulation in pronociceptive neuromodulators was accompanied by an enhanced nociceptive neuron excitability on days 3 and 10 post-CFA, as revealed by the CCR2-dependent increase in intracellular calcium mobilization following CCL2 stimulation. In DRG explants, we further demonstrated that the release of CCL2 was increased following peripheral inflammation. Finally, the excitation of nociceptors following peripheral inflammation stimulated the anterograde transport of SP at their peripheral nerve terminals. Importantly, blockade of CCR2 reduced sensory neuron excitability by limiting the calcium mobilization and subsequently decreased peripheral transport of SP towards the periphery. Finally, pharmacological inhibition of CCR2 reversed the pronociceptive action of CCL2 in rats receiving formalin injection and significantly reduced the neurogenic inflammation as well as the stimuli-evoked and movement-evoked nociceptive behaviors in CFA-treated rats. CONCLUSIONS: Our results provide significant mechanistic insights into the role of CCL2/CCR2 within the DRG in the development of peripheral inflammation, nociceptor sensitization, and pain hypersensitivity. We further unveil the therapeutic potential of targeting CCR2 for the treatment of painful inflammatory disorders.


Asunto(s)
Quimiocina CCL2/metabolismo , Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Dolor/metabolismo , Receptores CCR2/antagonistas & inhibidores , Receptores CCR2/metabolismo , Animales , Células Cultivadas , Adyuvante de Freund/toxicidad , Ganglios Espinales/efectos de los fármacos , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inyecciones Espinales , Masculino , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Pirrolidinas/administración & dosificación , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA